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Abstract

In this paper we introduces-degenerate curves in Lorentzian space forms as those ones whose
derivative of orders is a null vector provided thats > 1 and all derivatives of order less thans are
space-like (see the exact definition inSection 2). In this sense classical null curves are 1-degenerate
curves. We obtain a reference along ans-degenerate curve in ann-dimensional Lorentzian space
with the minimum number of curvatures. That reference generalizes the reference of Bonnor for
null curves in Minkowski space–time and it will be called the Cartan frame of the curve. The
associated curvature functions are called the Cartan curvatures of the curve. We characterize the
s-degenerate helices (i.e.s-degenerate curves with constant Cartan curvatures) inn-dimensional
Lorentzian space forms and we obtain a complete classification of them in dimension four.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The geometry of null hypersurfaces in space–times has played an important role in the
development of general relativity, as well as in mathematics and physics of gravitation. It is
necessary, e.g. to understand the causal structure of space–times, black holes, assymptoti-
cally flat systems and gravitational waves.
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A starting point to study null surfaces, or in general null hypersurfaces, consists of
investigating the curves that live in those hypersurfaces. In this sense, the null curves in
Lorentzian space forms has been studied by several authors (see, e.g.[2,3,9], and references
therein).

However, in a null hypersurface there are many other curves distinct from the null
ones. They are space-like curves with a null higher derivative, i.e.s-degenerate curves
(seeSection 2for details). In this paper we studys-degenerate curves in Lorentzian space
formsM

n
1 and obtain existence, uniqueness and congruence theorems for that kind of curves.

Notice that they must be space-like curves.
Time-like and light-like trajectories are the natural ones in space–time geometries, but

some recent experiments point out the existence of superluminal particles (space-like tra-
jectories) without any breakdown of the principle of relativity; theoretical developments
exist suggesting that neutrinos might be instances of “tachyons” as their square mass ap-
pears to be negative. A model has been recently presented to fit the cosmic ray spectrum
at E ≈ 1 − 4 PeV [6–8], using the hypothesis that the electron neutrino is a tachyon.
This model yields a value form2(νe) ≈ −3 eV2, which is consistent with the results
from recent measurements in tritium beta decay experiments[4,11,14]. Moreover, the
muon neutrino also exhibits a negative mass-squared[1]. However, as it is pointed out
in [5], at present time we have not a satisfactory quantum theory for tachyonic fermions,
so more theoretical work would be needed to determine a physically acceptable
theory.

In [12] the author considers a model of aD-dimensional massless particle described
by a Lagrangian proportional to theN th extrinsic curvature of the world-line. He presents
the Hamiltonian formulation of the system and shows that its trajectories are space-like
curves.

Therefore, it is required to construct a complete (at least local) theory of space-like tra-
jectories for neutrinos. Here, we are intended to provide a suitable mathematical machinery
to support the recent advances in theoretical physics.

In this paper we prove the following theorems.

Theorem 1.1. Letk1, . . . , km : [−δ, δ] → R be differentiable functions withki > 0 for i �=
s,m. Let p be a point inMn

1, n = m+ 2, and let{W0
1 , . . . ,W

0
s−1, L

0,W0
s , N

0,W0
s+1, . . . ,

W0
m} be a positively oriented pseudo-orthonormal basis ofTpM

n
1(c). Then there exists a

unique s-degenerate Cartan curveγ in M
n
1(c), with γ (0) = p, whose Cartan reference

satisfies

L(0) = L0, N(0) = N0, Wi(0) = W0
i , i ∈ {1, . . . , m}.

Theorem 1.2. If two s-degenerate Cartan curves C andC̄ in M
n
1(c) have Cartan curvatures

{k1, . . . , km}, whereki : [−δ, δ] → R are differentiable functions, then there exists a
Lorentzian transformation ofMn

1(c) which maps bijectively C intōC.

In Section 5we characterize the 2-degenerate helices (i.e. 2-degenerate curves with
constant Cartan curvatures) in four-dimensional Lorentzian space forms and we obtain a
complete classification of them.
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2. Frenet frames for s-degenerate curves

The goal of this section is to find Frenet frames fors-degenerate curves in Lorentzian
space forms. Before to do that, we need a technical result.

Let E be a real vector space with a symmetric bilinear mappingg : E × E → R. We
say thatg is degenerateonE if there exists a vectorξ �= 0 inE such that

g(ξ, v) = 0 for all v ∈ E,

otherwise,g is said to benon-degenerate. The radical (also called thenull space) of E,
with respect tog, is the subspace Rad(E) of E defined by

Rad(E) = {ξ ∈ E|g(ξ, v) = 0, v ∈ E}.
The dimension of Rad(E) is called thenullity degreeof g (orE) and is denoted byrE .

If F is a subspace ofE, then we can considergF the symmetric bilinear mapping on
F × F obtained by restrictingg and definerF as the nullity degree ofF (or gF ). For
simplicity, we will use〈, 〉 instead ofg or gF .

A vector v is said to betime-like, light-like or space-likeprovided thatg(v, v) < 0,
g(v, v) = 0 (andv �= 0), org(v, v) > 0, respectively. The vectorv = 0 is assumed to be
space-like. Aunit vectoris a vectoru such thatg(u, u) = ±1.

Two vectorsu andv are said to be orthogonal, writtenu ⊥ v, if g(u, v) = 0. Similarly,
two subsetsU andV of E are said to beorthogonalif u ⊥ v for anyu ∈ U andv ∈ V .
Given two orthogonal subspacesF1 andF2 in E with F1 ∩F2 = {0}, the orthogonal direct
sum ofF1 andF2 will be denoted byF1 ⊥ F2.

Lemma 2.1. Let (E, 〈, 〉) be a bilinear space and let F be a hyperplane of E. Let rF =
dim Rad(F ) andrE = dim Rad(E). Then the following statements hold.

(i) If rF = 0 andrE = 1, then there exists a null vector L such that

E = F ⊥ span{L}.
(ii) If rF = rE ∈ {0,1}, then there exists a non-null unit vector V such that

E = F ⊥ span{V }.
Moreover, if Rad(E) = {0} then V is unique, up to the sign.

(iii) If rF = 1andrE = 0,andF = F1 ⊥ L, whereL ∈ Rad(F ) andF1 is non-degenerate,
then there exists a unique null vector N such that〈L,N〉 = ε, ε = ±1, and

E = (span{L} ⊕ span{N}) ⊥ F1.

Proof. We only need to make some algebraic computations.

(i) SinceF is non-degenerate, thenE = F ⊥ F⊥, whereF⊥ = span{L} for a certain
vectorL. The inclusion Rad(E) ⊂ F⊥ implies Rad(E) = F⊥ and soL is a null
vector.
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(ii) We may assume thatrF = rE = 1. By consideringF = F1 ⊥ span{L}, where
F1 is non-degenerate andL is null, thenE = F1 ⊥ F⊥

1 . Since dimF⊥
1 = 2, then

F⊥
1 = span{L} ⊕ span{V }, where Rad(E) = span{L} andV is a non-null vector in

F⊥, so that the required splitting is fulfilled.
(iii) By a similar reasoning we may assume thatF = F1 ⊥ span{L}, whereF⊥

1 =
span{L} ⊕ span{V }. Since Rad(E) = {0} then 〈L,V 〉 �= 0. Let N be the vector
defined by

N = ε

〈L,V 〉
(
V − 〈V, V 〉

2〈L,V 〉L
)
.

It is easy to see thatN is the only vector satisfying〈N,N〉 = 0, 〈L,N〉 = ε and
N ∈ F⊥

1 , and the splitting follows. �

Let (Mn
1 ,∇) be an oriented Lorentzian manifold and letγ : I → Mn

1 be a differentiable
curve inMn

1 . For any vector fieldV alongγ , letV ′ be the covariant derivative ofV along
γ . WriteEi(t) = span{γ ′(t), γ ′′(t), . . . , γ (i)(t)}, wheret ∈ I andi = 1,2, . . . , n. Let d
be the number defined byd = max{i : dimEi(t) = i for all t}.

Definition 2.2. With the above notations, the curveγ : I → Mn
1 is said to be an

s-degenerate(or s-light-like) curveif for all 1 ≤ i ≤ d, dim Rad(Ei(t)) is constant for all
t , and there existss, 0< s ≤ d, such that Rad(Es) �= {0} and Rad(Ej ) = {0} for all j < s.

Remark 2.3. Note that 1-degenerate curves are precisely the null (or light-like) curves (see,
for instance[2,3,9], and references therein). In this paper we will focus ons-degenerate
curves (s > 1), in Lorentzian spaces. Notice that they must be space-like curves.

To find the Frenet frames, we will distinguish four cases separately:

1) d = n ands ≤ d;
2) d < n ands = d;
3) d < n ands = d − 1;
4) d < n ands < d − 1.

Case 2.4 (d = n ands ≤ d). First of all, writeγ ′ = k̄1W1, whereW1 is a unit space-like
vector such that̄k1 > 0. ThenE2 = span{W1} ⊕ span{γ ′′}, so that fromLemma 2.1there
exists a unit space-like vectorW2 such thatE2 = span{W1} ⊥ span{W2}. Furthermore,
W2 is unique by choosing it in such a way that{γ ′, γ ′′} and {W1,W2} have the same
orientation. By proceeding iteratively, usingLemma 2.1, we obtain a set{W1, . . . ,Ws−1}
of orthonormal space-like sections alongγ such that{γ ′, . . . , γ (i)} and{W1, . . . ,Wi} have
the same orientation for alli, 1 ≤ i ≤ s − 1. Now we haveEs = Es−1 ⊕ span{γ (s)}
and dim Rad(Es) = 1. By using againLemma 2.1we can find a (not unique) null vector
field L such thatEs = Es−1 ⊕ span{L}. As s �= n, becauseEn is non-degenerate, then
Es+1 = Es ⊕span{γ (s+1)}. Now we will prove that dim Rad(Es+1) = 1. By assuming that
dim Rad(Es+1) = 0, then there exists a unique null vector fieldN satisfying〈Wi,N〉 =
〈N,N〉 = 0, 〈L,N〉 = ε, ε = ±1, andEs+1 = span{W1, . . . ,Ws−1, L,N}. By taking
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derivatives we obtain the following equations:

γ ′ = k̄1W1, W ′
1 = k̄2W2, W ′

i = −k̄iWi−1 + k̄i+1Wi+1, 2 ≤ i ≤ s − 2,

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL, L′ = εk̄s+1L

for certain functionsk̄j , j = 1, . . . , s + 1. As L ∈ span{γ ′, . . . , γ (s)}, we can write
L = λ1γ

′ + · · · + λsγ
(s), with λs �= 0, and therefore,L′ = (∗) + λsγ

(s+1) = εk̄s+1L ∈
span{γ ′, . . . , γ (s)}. We conclude thatγ (s+1) ∈ span{γ ′, . . . , γ (s)}, which cannot hold.

Then dim Rad(Es+1) = 1, and usingLemma 2.1once more there exists a (not unique)
vector fieldWs such that{γ ′, . . . , γ (s+1)} and{W1, . . . ,Ws−1, L,Ws} have the same ori-
entation. Sincen > s+1, we claim that dim Rad(Es+2) = 0. Otherwise, there exists a unit
space-like vector fieldWs+1 orthogonal toEs+1. By differentiating we obtain

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL, L′ = εk̄s+1L+ k̄s+2Ws. (1)

Since Rad(Es+2) = span{L} we get〈L, γ (s+1)〉 = 〈L, γ (s+2)〉 = 0, so that〈L′, γ (s+1)〉 =
0. From here and(1) we find that〈Ws, γ

(s+1)〉 = 0 (i.e.Ws lies in Rad(Es+1)), which
is a contradiction. Hence dim Rad(Es+2) = 0 and there exists a uniqueN satisfying
〈N,L〉 = ε and 〈N,Wi〉 = 0. We chooseε in such a way that{γ ′, . . . , γ (s+2)} and
{W1, . . . ,Ws−1, L,Ws,N} have the same orientation. Ifs + 2 = n, the process concludes;
otherwise, dim Rad(Ei) = 0 for i > s + 2 and we can obtain orthonormal space-like
sections{Ws+1, . . . ,Wm},m = n− 2, with the same orientation rule. The vector fieldWm

is chosen in order that{W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,Wm} is positively oriented.
Regarding this reference, we have the following equations:

γ ′ = k̄1W1, W ′
1 = k̄2W2, W ′

i = −k̄iWi−1 + k̄i+1Wi+1, 2 ≤ i ≤ s − 2,

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL, L′ = εk̄s+1L+ k̄s+2Ws,

W ′
s = εk̄s+3L− εk̄s+2N, N ′ = −k̄sWs−1 − εk̄s+1N − k̄s+3Ws + k̄s+4Ws+1,

W ′
s+1 = −εk̄s+4L+ k̄s+5Ws+2, W ′

j = −k̄j+3Wj−1 + k̄j+4Wj+1,

s + 2 ≤ j ≤ m− 1, W ′
m = −k̄m+3Wm−1

for certain functions{k̄1, . . . , k̄m+3}. The setF = {W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,

Wm} is said to be aFrenet referencealong γ . The functions{k̄1, . . . , k̄m+3} are called
thecurvature functionsof γ with respect toF. The above equations are called theFrenet
equationsof γ with respect toF.

Case 2.5 (d < n ands = d). A similar reasoning as inCase 2.4shows that there exists a
set{W1, . . . ,Ws−1, L} such thatL is a null vector,{W1, . . . ,Ws−1} is an orthonormal set
of space-like vectors andEd = span{W1, . . . ,Ws−1, L}. Then we can obtain the following
equations:

γ ′ = k̄1W1, W ′
1 = k̄2W2, W ′

i = −k̄iWi−1 + k̄i+1Wi+1, 2 ≤ i ≤ s − 2,

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL, L′ = εk̄s+1L

for certain functions{k̄1, . . . , k̄s+1}. If Mn
1 is a Lorentzian space form, thenγ lies in a

d-dimensional totally geodesic light-like submanifold. This can be proved by adapting the
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proofs of Theorems 5 and 9 of Chapter 7 in[13]. This case has been treated inSection 2of
[10].

Case 2.6 (d < n ands = d − 1). As above again, we obtainEd = span{W1, . . . ,Ws−1,

L,Ws} and equations

W ′
s−1 = −k̄s−1Ws−2 + εk̄sL, L′ = εk̄s+1L+ k̄s+2Ws, W ′

s = εk̄s+3L.

SinceWs lies in E⊥
s , we have〈Ws, γ

(s)〉 = 0. By differentiating here we deduce that
〈Ws, γ

(s+1)〉 = 0, which is a contradiction.

Case 2.7 (d < nands < d−1). Now we haveEd = {W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,

Wd−2}. Working as in case of non-degenerate curves (see, e.g.[13, Vol. IV] ), if Mn
1 is a

Lorentzian space form we deduce thatγ lies in ad-dimensional non-degenerate totally
geodesic submanifold ofMn

1 . So this case reduces toCase 2.4.

Remark 2.8. Before going any further, we note that the types does not depend on the pa-
rameter of the curve. To see that lett̄ be another parameter and writeγ (t) = β(t̄(t)). By dif-
ferentiating with respect tot we getγ (i)(t) = ∑i

j=1 xij (t)β
j (t̄), i.e.Ei = span{γ ′(t), . . . ,

γ (i)(t)} = span{β ′(t̄), . . . , β(i)(t̄)}, which shows the claim.
On the other hand, letΦ : Mn

1 → Mn
1 be an isometry and̄γ (t) = (Φ ◦ γ )(t). Then for

all vector fieldV alongγ we have

D̄

dt
(dΦγ(t)(V (t))) = dΦγ(t)

(
D

dt
V (t)

)
,

whereDt andD̄t stand for the covariant derivatives alongγ andγ̄ , respectively.
Hence〈γ (i)(t), γ (j)(t)〉 = 〈γ̄ (i)(t), γ̄ (j)(t)〉 showing that this kind of curves are invariant

under Lorentzian transformations, in the sense that the types does not change under a
Lorentzian transformation.

3. The Cartan reference of an s-degenerate curve

The goal of this section is to find a Frenet frame with the minimal number of curvatures
and such that they are invariant under Lorentzian transformations. We will restrict ourselves
to Case 2.4. Without loss of generality, let us assume thatγ is arc-length parametrized, so
thatW1 = γ ′ andk̄1 = 1. By takingk̄s = ε, Lemma 2.1leads to a uniquely determined set
{W1, . . . ,Ws−1, L}. Therefore, we only need to findWs .

Suppose thatWs andW ∗
s are two distinct vector fields generating two distinct Frenet

frames, i.e.:

{W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,Wm}
→ {k̄1 = 1, k̄2, . . . , k̄s = 1, k̄s+1, . . . , k̄m+3},

{W1, . . . ,Ws−1, L,W
∗
s , N

∗,W ∗
s+1, . . . ,W

∗
m}

→ {k̄1 = 1, k̄2, . . . , k̄s = 1, k̄∗
s+1, . . . , k̄

∗
m+3}.
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A straightforward computation shows that

W ∗
s = fL +Ws, N∗ = −1

2f
2L+N − fWs , k̄∗

s+1 = k̄s+1 − f k̄s+2, (2)

wheref : I → R is a differentiable function. We can choosef in such a way that̄k∗
s+1 = 0.

Then by reordering the curvature functions we have the following equations:

γ ′ = W1, W ′
1 = k1W2, W ′

i = −ki−1Wi−1 + kiWi+1, 2 ≤ i ≤ s − 2,

W ′
s−1 = −ks−2Ws−2 + L, L′ = ks−1Ws, W ′

s = εksL− εks−1N,

N ′ = −εWs−1 − ksWs + ks+1Ws+1, W ′
s+1 = −εks+1L+ ks+2Ws+2,

W ′
j = −kjWj−1 + kj+1Wj+1, s + 2 ≤ j ≤ m− 1, W ′

m = −kmWm−1 (3)

for certain functions{k1, . . . , km}. Bearing in mind(2) we can easily deduce the following
result.

Theorem 3.1. Let γ : I → Mn
1 , n = m + 2, be an s-degenerate unit curve, s > 1, and

suppose that{γ ′(t), γ ′′(t), . . . , γ (n)(t)} spansTγ (t)Mn
1 for all t. Then there exists a unique

Frenet frame satisfyingEq. (3).

Definition 3.2. An s-degenerate curve,s > 1, satisfying the above conditions is said to be
ans-degenerate Cartan curve. The reference and curvature functions given by(3) will be
called theCartan referenceandCartan curvaturesof γ , respectively.

Observe that whenm > s thenε = −1 andki > 0 for i �= s, andkm > 0 or (km <

0, resp.) according to{γ ′, γ ′′, . . . , γ (n)} is positively or negatively oriented, respectively.
However, whenm = s thenε = −1 or ε = 1 according to{γ ′, γ ′′, . . . , γ (n)} is positively
or negatively oriented, respectively, andki > 0 for i �= s.

Definition 3.3. An s-degenerate helixin Mn
1 is ans-degenerate Cartan curve having con-

stant Cartan curvatures.

4. s-Degenerate curves in Lorentzian space forms

Let γ : I → M
n
1(c) be ans-degenerate Cartan curve,M

n
1(c) standing forRn

1, S
n
1 ◦ H

n
1,

according toc = 0, c = 1 or c = −1, respectively. LetDt denote the covariant derivative
in M

n
1(c) alongγ . Then for any vector fieldV alongγ we haveDtV = V ′ + c〈V, γ ′〉γ ,

where〈, 〉 denotes the standard metric inR
n
1, R

n+1
1 or R

n+1
2 . If {W1, . . . ,Ws−1, L,Ws,N,

Ws+1, . . . ,Wm} is the Cartan reference, thenEq. (3)can be written as follows:

γ ′ = W1, W ′
1 = k1W2 − cγ, W ′

i = −ki−1Wi−1 + kiWi+1, 2 ≤ i ≤ s − 2,

W ′
s−1 = −ks−2Ws−2 + L, L′ = ks−1Ws, W ′

s = εksL− εks−1N,

N ′ = −εWs−1 − ksWs + ks+1Ws+1, W ′
s+1 = −εks+1L+ ks+2Ws+2,

W ′
j = −kjWj−1 + kj+1Wj+1, s + 2 ≤ j ≤ m− 1, W ′

m = −kmWm−1. (4)
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Now we state the following question: Let{W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,Wm} be
a reference satisfying(3) for certain functionskj . Is there ans-degenerate Cartan curve
γ having{W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,Wm} as Cartan reference andkj as Cartan
curvatures?

The answer is affirmative, as we will show in this section. But before to do that, we are
going to state and prove an algebraic result.

Definition 4.1. A basisB = {L1, N1, . . . , Lr ,Nr,W1, . . . ,Wm} of R
n
q , with 2r ≤ 2q ≤ n

andm = n− 2r, is said to bepseudo-orthonormalif it satisfies the following equations:

〈Li, Lj 〉 = 〈Ni,Nj 〉 = 0, 〈Li,Ni〉 = εi, 〈Li,Nj 〉 = 0, i �= j,

〈Li,Wα〉 = 〈Ni,Wα〉 = 0, 〈Wα,Wβ〉 = εαδαβ,

wherei, j ∈ {1, . . . , r}, α, β ∈ {1, . . . , m}, εα = −1 if 1 ≤ α ≤ q − r andεα = 1 if
q − r + 1 ≤ α ≤ m.

Lemma 4.2. Let B = {L1, N1, . . . , Lr ,Nr,W1, . . . ,Wm} be a basis ofRn
q , with 2r ≤

2q ≤ n andm = n− 2r. ConsiderB′ = {V1, . . . , Vq, Vq+1, . . . , Vn} where

Vi =




1√
2
(Li − εiNi) i = 1, . . . , r,

Wi−r i = r + 1, . . . , q,
1√
2
(Li−q + εi−qNi−q) i = q + 1, . . . , q + r,

Wi−2r i = q + r + 1, . . . , n.

(5)

The following conditions are equivalent:

(i) B is a pseudo-orthonormal basis.
(ii) B′ is an orthonormal basis.

(iii) B′ satisfies

−
q∑

α=1

VαiVαj +
n∑

β=q+1

VβiVβj = ηij .

(iv) B satisfies

r∑
α=1

εα(LαiNαj + LαjNαi)−
q−r∑
β=1

WβiWβj +
m∑

θ=q−r+1

WθiWθj = ηij .

Here Vρk, Lρk,Nρk andWρk stand for the components of vectorsVρ,Lρ,Nρ andWρ ,
respectively, and(ηij ) the matrix of the canonical metric in the standard coordinates.

Proof. (i) ⇔ (ii) It is obvious.
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(ii) ⇔ (iii) Consider the matricesV = (Vij ),B = (bij ) andC = (cij ) inMn×n(R) given
by

bij = 〈Vi, Vj 〉, cij = −
q∑

α=1

VαiVαj +
n∑

β=q+1

VβiVβj .

Put

V =
(
A1 A2

A3 A4

)
, B =

(
B1 B2

B3 B4

)
, C =

(
C1 C2

C3 C4

)
,

whereA1, B1 andC1 are matrices inMq×q(R). Consider the complex matrix

A =
(

A1 iA2

−iA3 A4

)
∈Mn×n(C).

Then a straightforward computation shows that

AAT =
(

−B1 iB2

iB3 B4

)
, ATA =

(
−C1 −iC2

−iC3 C4

)
.

ThenB′ is orthonormal if and only ifC1 = −I , C4 = I andC2 = C3 = 0.
(iii) ⇔ (iv) From (5) we have

Lα = 1√
2
(Vα+q + Vα), Nα = εα√

2
(Vα+q − Vα), α ∈ {1, . . . , r}

and therefore

εα(LαiNαj +NαiLαj ) = −VαiVαj + V(α+q)iV(α+q)j ,
α ∈ {1, . . . , r}, i, j ∈ {1, . . . , n},

which finishes the proof. �

Theorem 4.3. Letk1, . . . , km : [−δ, δ] → R be differentiable functions withki > 0 for i �=
s,m.Let p be a point inMn

1,n = m+2,and let{W0
1 , . . . ,W

0
s−1, L

0,W0
s , N

0,W0
s+1, . . . ,W

0
m}

be a positively oriented pseudo-orthonormal basis ofTpM
n
1(c). Then there exists a unique

s-degenerate Cartan curveγ in M
n
1(c), with γ (0) = p, whose Cartan reference satisfies

L(0) = L0, N(0) = N0, Wi(0) = W0
i , i ∈ {1, . . . , m}.

Proof. By the general theory of differential equations we know that there exists a unique
solution{W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,Wm} of (4), defined on the interval [−δ, δ],
and satisfying the initial conditions of the theorem. Taking into account(4), a straightforward
computation leads to

dt

dt


ε(Li(t)Nj (t)+ Lj (t)Ni(t))+ cγi(t)γj (t)+

m∑
β=1

Wβi(t)Wβj (t)


 = 0.
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Now, since{W1, . . . ,Ws−1, L,Ws,N,Ws+1, . . . ,Wm} is pseudo-orthonormal att = 0,
Lemma 4.2(with r = 1) yields

ε(Li(t)Nj (t)+ Lj (t)Ni(t))+ cγi(t)γj (t)+
m∑
β=1

Wβi(t)Wβj (t) = νij ∀t ∈ [δ, δ].

By using againLemma 4.2, we deduce that, for allt , {L,N,W1, . . . ,Wm, γ } is pseudo-
orthonormal ifc = ±1, and{L,N,W1, . . . ,Wm} is pseudo-orthonormal ifc = 0. This
concludes the proof. �

Theorem 4.4 (Congruence theorem).If two s-degenerate Cartan curves C andC̄ in M
n
1(c)

have Cartan curvatures{k1, . . . , km}, whereki : [−δ, δ] → R are differentiable functions,
then there exists a Lorentzian transformation ofM

n
1(c) which maps bijectively C intōC.

5. s-Degenerate helices in M
4
1(c)

This section is devoted to the classification of 2-degenerate Cartan helices in Lorentzian
space formsM4

1(c). Now, the Cartan equations can be written as follows:

γ ′ = W1, W ′
1 = L− cγ, L′ = k1W2, W ′

2 = εk2L− εk1N,

N ′ = −εW1 − k2W2. (6)

If we assume thatk1 andk2 are constant, thenγ satisfies the following differential equation:

γ (5) − (2εk1k2 − c)γ (3) − (k2
1 + 2εck1k2)γ

′ = 0.

Without loss of generality, we can assume thatγ is positively oriented, i.e.ε = −1.
In what follows, we will present examples of 2-degenerate Cartan helices inM

4
1(c) and

show the corresponding characterization theorems.

5.1. Helices inR4
1

Example 5.1. Let γω,σ be the curve inR4
1 defined by

γω,σ (t) = 1√
ω2 + σ 2

(σ
ω

coshωt,
σ

ω
sinhωt,

ω

σ
sinσ t,

ω

σ
cosσ t

)
with ωσ > 0. Thenγω,σ is a helix with curvatures

k1 = ωσ, k2 = σ 2 − ω2

2ωσ
.

Theorem 5.2 (Clasification theorem of 2-degenerate helices inR
4
1). Letγ be an s-degenerate

Cartan curve fully immersed inR4
1. Thenγ is a helix if and only if it is congruent to a helix

of Example 5.1.
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Proof. Let k1 > 0 andk2 be the constant curvatures ofγ . By Theorem 1.2it suffices to
find a helix of the family given inExample 5.1with these curvatures. Take constantsω and
σ such that

ω2 = k1(−k2 +
√

1 + k2
2), σ 2 = k1(k2 +

√
1 + k2

2)

with ωσ > 0. The proof concludes since the curvatures ofγω,σ arek1 andk2. �

5.2. Helices inS4
1

Example 5.3 (Helices of type 1). Let 0< σ 2 < 1 < ω2 and letγω,σ be the curve inS4
1

defined by

γω,σ (t)=


√
(ω2 − 1)(1 − σ 2)

ω2σ 2
,

1

ω

√
1 − σ 2

ω2 − σ 2
sinωt,

1

ω

√
1 − σ 2

ω2 − σ 2
cosωt,

1

σ

√
ω2 − 1

ω2 − σ 2
sinσ t,

1

σ

√
ω2 − 1

ω2 − σ 2
cosσ t


 .

Thenγω,σ is a helix with curvatures

k1 =
√
(ω2 − 1)(1 − σ 2), k2 = ω2 + σ 2 − 1

2
√
(ω2 − 1)(1 − σ 2)

.

Example 5.4 (Helices of type 2). Letσ 2 > 1 and letγω,σ be the curve inS4
1 defined by

γω,σ (t)=

 1

ω

√
σ 2 − 1

ω2 + σ 2
coshωt,

1

ω

√
σ 2 − 1

ω2 + σ 2
sinhωt,

1

σ

√
ω2 + 1

ω2 + σ 2
sinσ t,

1

σ

√
ω2 + 1

ω2 + σ 2
cosσ t,

1

ωσ

√
(ω2 + 1)(σ 2 − 1)


 , ω �= 0.

Thenγω,σ is a helix with curvatures

k1 =
√
(σ 2 − 1)(ω2 + 1), k2 = σ 2 − ω2 − 1

2
√
(σ 2 − 1)(ω2 + 1)

.

Example 5.5 (Helices of type 3). Letσ 2 > 1 and letγσ be the curve inS4
1 defined by

γσ (t)=

1

2

√
σ 4−1

σ 2−1
t2,

√
σ 2−1

σ 2
t,

√
σ 4−1

σ 2
−

√
σ 4−1

2(σ 2+1)
t2,

1

σ 2
sinσ t,

1

σ 2
cosσ t


 .
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Thenγσ is a helix with curvatures

k1 =
√
σ 2 − 1, k2 = 1

2(
√
σ 2 − 1).

Theorem 5.6 (Classification theorem of 2-degenerate helices inS
4
1). Letγ be an s-degenerate

Cartan curve fully immersed inS4
1. Thenγ is a helix if and only if it is congruent to one in

the families described inExamples 5.3–5.5.

Proof. Let k1 > 0 andk2 be the constant curvatures ofγ . We have to find a helix of one of
the above types with these curvatures.

Case 1. Assume thatk2 > k1/2. Take the helixγω,σ of type 1 determined by

ω2 = 1
2((2k1k2 + 1)+

√
(1 − 2k1k2)2 + 4k2

1),

σ 2 = 1
2((2k1k2 + 1)−

√
(1 − 2k1k2)2 + 4k2

1).

A straightforward computation shows that 0< σ 2 < 1 < ω2 and the curvatures ofγω,σ
arek1 andk2.

Case 2. Assume thatk2 < k1/2. Take the helixγω,σ of type 2 determined by

ω2 = 1
2(−(2k1k2 + 1)+

√
(1 − 2k1k2)2 + 4k2

1),

σ 2 = 1
2((2k1k2 + 1)+

√
(1 − 2k1k2)2 + 4k2

1).

It is easy to show thatσ 2 > 1 and the curvatures ofγω,σ arek1 andk2.
Case 3. Assume thatk2 = k1/2. Take the helixγσ of type 3 determined byσ 2 = 1+ k2

1.
It is easy to see thatσ 2 > 1 and the curvatures ofγσ arek1 andk2.

The result follows fromTheorem 1.2. �

5.3. Helices enH4
1

Example 5.7 (Helices of type 1). Let 0< σ 2 < 1 < ω2 and letγω,σ be the curve inH4
1

defined by

γω,σ (t)=

 1

ω

√
1 − σ 2

ω2 − σ 2
coshωt,

1

σ

√
ω2 − 1

ω2 − σ 2
coshσ t,

1

ω

√
1 − σ 2

ω2 − σ 2
sinhωt,

1

σ

√
ω2 − 1

ω2 − σ 2
sinhσ t,− 1

ωσ

√
(ω2 − 1)(1 − σ 2)


 .

Thenγω,σ is a helix with curvatures

k1 =
√
(ω2 − 1)(1 − σ 2), k2 = −1

2

ω2 + σ 2 − 1√
(ω2 − 1)(1 − σ 2)

.
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Example 5.8 (Helices of type 2). Letω2 > 1 and letγω,σ be the curve inH4
1 defined by

γω,σ (t)=


√
(ω2 − 1)(σ 2 + 1)

ω2σ 2
,

1

ω

√
σ 2 + 1

ω2 + σ 2
coshωt,

1

ω

√
σ 2 + 1

ω2 + σ 2
sinhωt,

1

σ

√
ω2 − 1

ω2 + σ 2
sinσ t,

1

σ

√
ω2 − 1

ω2 + σ 2
cosσ t


 , σ �= 0.

Thenγω,σ is a helix with curvatures

k1 =
√
(ω2 − 1)(σ 2 + 1), k2 = 1

2

σ 2 − ω2 + 1√
(ω2 − 1)(σ 2 + 1)

.

Example 5.9 (Helices of type 3). Letω2 > 1 and letγω be the curve inH4
1 defined by

γω,σ (t)=

√

ω4 − 1

ω2
+

√
ω4 − 1

2(ω2 + 1)
t2,

1

ω2
coshωt,

1

ω2
sinhωt,

√
ω2 − 1

ω2
t,

1 − ω4

2(ω2 + 1)
t2


 .

Thenγω is a helix with curvatures

k1 =
√
ω2 − 1, k2 = −1

2

√
ω2 − 1.

Theorem 5.10 (Clasification theorem of 2-degenerate helices inH
4
1). Letγ be an s-degene-

rate Cartan curve fully immersed inH4
1. Thenγ is a helix if and only if it is congruent to

one in the families described inExamples 5.7–5.9.

Proof. The idea of the proof is exactly alike as that in the precedent cases. Letk1 > 0 and
k2 be the constant curvatures ofγ . By the congruence theorem we only have to find a helix
of one of the above types with these curvatures.

Case 1. Assume thatk2 < −k1/2. Take the helixγω,σ of type 1 determined by

ω2 = 1
2((1 − 2k1k2)+

√
(2k1k2 + 1)2 + 4k2

1),

σ 2 = 1
2((1 − 2k1k2)−

√
(2k1k2 + 1)2 + 4k2

1).

A straightforward computation shows that 0< σ 2 < 1 < ω2 and the curvatures ofγω,σ
arek1 andk2.
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Case 2. Assume thatk2 > −k1/2. Take the helixγω,σ of type 2 determined by

ω2 = 1
2((1 − 2k1k2)+

√
(2k1k2 + 1)2 + 4k2

1),

σ 2 = 1
2(−(1 − 2k1k2)+

√
(2k1k2 + 1)2 + 4k2

1).

As before we have thatω2 > 1 and the curvatures ofγω,σ arek1 andk2.
Case 3. Finally, assume thatk2 = −k1/2. Take the helixγω of type 3 determined by

ω2 = 1 + k2
1. It is easy to see thatω2 > 1 and the curvatures ofγω arek1 andk2. �

References

[1] K. Assamagan, C. Brönnimann, M. Daum, H. Forrer, R. Frosch, P. Gheno, R. Horisberger, M. Janousch, P.
Kettle, T. Spirig, C. Wigger, Upper limit of the muon-neutrino mass and charged-pion mass from momentum
analysis of a surface muon beam, Phys. Rev. D 53 (1996) 6065–6077.

[2] A. Bejancu, Light-like curves in Lorentz manifolds, Publ. Math. Debrecen 44 (1994) 145–155.
[3] W.B. Bonnor, Null curves in a Minkowski space–time, Tensor, N. S. 20 (1969) 229–242.
[4] J. Bonn, C. Weinheimer, Neutrino mass from tritiumβ decay—present limits and perspectives, Acta Phys.

Pol. B 31 (2000) 1209–1220.
[5] A. Chodos, A. Hauser, V. Kostelecky, Phys. Lett. B 150 (1985) 296.
[6] R. Ehrlich, Implications for the cosmic ray spectrum of a negative electron neutrino (mass)2, Phys. Rev. D

60 (1999) 017302, 4.
[7] R. Ehrlich, Neutrino mass2 inferred from the cosmic ray spectrum and tritium beta decay, Phys. Lett. B 493

(2000) 229–232.
[8] R. Erhlich, Is there a 4.5 PeV neutron line in the cosmic ray spectrum? Phys. Rev. D 60 (1999) 73005, 5.
[9] A. Ferrández, A. Giménez, P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A 16 (2001)

4845–4863.
[10] A. Ferrández, A. Giménez, P. Lucas, Null generalized helices in Lorentz–Minkowski spaces, Preprint, 2002.
[11] V. Lobashev, V. Aseev, A. Belesev, A. Berlev, E. Geraskin, A. Golubev, O. Kazachenko, Y. Kuznetsov, R.

Ostroumov, L. Rivkis, B. Stern, N. Titov, S. Zadorozhny, Y. Zakharov, Direct search for mass of neutrino and
anomaly in the tritium beta-spectrum, Phys. Lett. B 460 (1999) 227–235.

[12] A. Nersesyan, A Lagrangian model of a massless particle on space-like curves, Theor. Math. Phys. 126 (2001)
147–160.

[13] M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Boston, 1975.
[14] C. Weinheimer, B. Degen, A. Bleile, J. Bonn, L. Bornschein, O. Kazachenko, A. Kovalik, E. Otten, High

precision measurement of the tritium� spectrum near its endpoint and upper limit on the neutrino mass,
Phys. Lett. B 460 (1999) 219–226.


	s-Degenerate curves in Lorentzian space forms
	Introduction
	Frenet frames for s-degenerate curves
	The Cartan reference of an s-degenerate curve
	s-Degenerate curves in Lorentzian space forms
	s-Degenerate helices in M14(c)
	Helices in R14
	Helices in S14
	Helices en H14

	References


