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Abstract

In this paper we introduce-degenerate curves in Lorentzian space forms as those ones whose
derivative of ordes is a null vector provided that > 1 and all derivatives of order less thaare
space-like (see the exact definitiorSection 2. In this sense classical null curves are 1-degenerate
curves. We obtain a reference alongsadegenerate curve in arrdimensional Lorentzian space
with the minimum number of curvatures. That reference generalizes the reference of Bonnor for
null curves in Minkowski space—time and it will be called the Cartan frame of the curve. The
associated curvature functions are called the Cartan curvatures of the curve. We characterize the
s-degenerate helices (i.e-degenerate curves with constant Cartan curvaturegdimensional
Lorentzian space forms and we obtain a complete classification of them in dimension four.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The geometry of null hypersurfaces in space—times has played an important role in the
development of general relativity, as well as in mathematics and physics of gravitation. It is
necessary, e.g. to understand the causal structure of space—times, black holes, assymptoti-
cally flat systems and gravitational waves.
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A starting point to study null surfaces, or in general null hypersurfaces, consists of
investigating the curves that live in those hypersurfaces. In this sense, the null curves in
Lorentzian space forms has been studied by several authors (s¢&,3%93.and references
therein).

However, in a null hypersurface there are many other curves distinct from the null
ones. They are space-like curves with a null higher derivative sidegenerate curves
(seeSection Zor details). In this paper we studydegenerate curves in Lorentzian space
formsM] and obtain existence, uniqueness and congruence theorems for thatkind of curves.
Notice that they must be space-like curves.

Time-like and light-like trajectories are the natural ones in space—time geometries, but
some recent experiments point out the existence of superluminal particles (space-like tra-
jectories) without any breakdown of the principle of relativity; theoretical developments
exist suggesting that neutrinos might be instances of “tachyons” as their square mass ap-
pears to be negative. A model has been recently presented to fit the cosmic ray spectrum
at E ~ 1 — 4PeV[6-8], using the hypothesis that the electron neutrino is a tachyon.
This model yields a value fom?2(v,) ~ —3eV2, which is consistent with the results
from recent measurements in tritium beta decay experimdnid,14] Moreover, the
muon neutrino also exhibits a negative mass-squitedHowever, as it is pointed out
in [5], at present time we have not a satisfactory quantum theory for tachyonic fermions,
so more theoretical work would be needed to determine a physically acceptable
theory.

In [12] the author considers a model offadimensional massless particle described
by a Lagrangian proportional to théth extrinsic curvature of the world-line. He presents
the Hamiltonian formulation of the system and shows that its trajectories are space-like
curves.

Therefore, it is required to construct a complete (at least local) theory of space-like tra-
jectories for neutrinos. Here, we are intended to provide a suitable mathematical machinery
to support the recent advances in theoretical physics.

In this paper we prove the following theorems.

Theorem 1.1. Letky, ..., k, : [-3§, 8] — R be differentiable functions with > Ofori
s, m. Letp be a point itVI§, n = m + 2,and lettW?, ..., w2, LO, WO N0, W0, ...
W,S} be a positively oriented pseudo-orthonormal basig’glfl} (c). Then there exists a
unique s-degenerate Cartan curyein M (c), with y(0) = p, whose Cartan reference

satisfies
L) = L0, N(0) = NO, w0 =w? ie{l,...,m).

Theorem 1.2. Iftwo s-degenerate Cartan curves C afith M (c) have Cartan curvatures
{k1, ..., km}, wherek; : [-4,8] — R are differentiable functionsthen there exists a
Lorentzian transformation d¥ll} (c) which maps bijectively C intG'.

In Section 5we characterize the 2-degenerate helices (i.e. 2-degenerate curves with
constant Cartan curvatures) in four-dimensional Lorentzian space forms and we obtain a
complete classification of them.
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2. Frenet framesfor s-degenerate curves

The goal of this section is to find Frenet frames fedegenerate curves in Lorentzian
space forms. Before to do that, we need a technical result.

Let E be a real vector space with a symmetric bilinear mapgingt x E — R. We
say thatg is degenerat®n E if there exists a vectay # 0 in E such that

g€, v)=0 forallvekE,

otherwise,g is said to benon-degenerateTheradical (also called thenull spacé of E,
with respect tqg, is the subspace RéH) of E defined by

RadE) = (€ € E|g(€,v) =0, ve E).

The dimension of Rady) is called thenullity degreeof g (or E) and is denoted byg.

If F is a subspace of, then we can considesr the symmetric bilinear mapping on
F x F obtained by restricting and definerr as the nullity degree of' (or gg). For
simplicity, we will use(, ) instead ofg or gr.

A vector v is said to betime-like light-like or space-likeprovided thatg (v, v) < O,
g(v,v) = 0 (andv # 0), org(v, v) > 0, respectively. The vectar = 0 is assumed to be
space-like. Aunit vectoris a vectom: such thaig (u, u) = +1.

Two vectorsy andv are said to be orthogonal, writtenL v, if g(u, v) = 0. Similarly,
two subsetd/ andV of E are said to b@rthogonalif u L v for anyu € U andv € V.
Given two orthogonal subspacg&s and F» in E with F1 N F» = {0}, the orthogonal direct
sum of F1 and F»> will be denoted byF; L F>.

Lemma 2.1. Let (E, {,)) be a bilinear space and let F be a hyperplane ofLEtrp =
dimRad F) andrg = dim Rad E). Then the following statements hold

(i) If rr = 0andrg = 1,then there exists a null vector L such that
E =F 1 spar{lL}.

(iiy If rp =rg € {0, 1}, then there exists a non-null unit vector V such that
E =F L spar{V}.

Moreover if Rad E) = {0} then V is uniqueup to the sign
(i) Ifrp = landrg = 0,andF = F1 1 L,whereL € Rad F)andFyis nhon-degenerate,
then there exists a unique null vector N such ttlatN) = ¢, ¢ = £1, and

E = (spar{L} @ sparf{N}) L Fi.

Proof. We only need to make some algebraic computations.

() SinceF is non-degenerate, theh = F 1 F1, whereFL = spar{L} for a certain
vector L. The inclusion Radk) ¢ F* implies RadE) = F* and soL is a null
vector.
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(i) We may assume thatr = rg = 1. By consideringFF = F; L spariL}, where
F1 is non-degenerate andis null, thenE = F; L Fi-. Since dinFj- = 2, then
Ff = spariL} @ spar{V}, where RadE) = spar{L} andV is a non-null vector in
F1, so that the required splitting is fulfilled.

(i) By a similar reasoning we may assume thfat= Fy L spar{L}, where Fj* =
sparfL} & spar{V}. Since RadE) = {0} then(L, V) # 0. Let N be the vector
defined by

& (V, V)
N = vV — L).
(L, V) 2(L, V)
It is easy to see thaV is the only vector satisfyingN, N) = 0, (L, N) = ¢ and
N € Fj*, and the splitting follows. O

Let (M7, V) be an oriented Lorentzian manifold andjet I — M7 be a differentiable
curve inM7. For any vector field” alongy, let V' be the covariant derivative ¢f along
y. Write E; (t) = spary’(t), y" (), ...,y D)}, wherer e I andi = 1,2,...,n. Letd
be the number defined by= max{i : dimE;(t) = i forall¢}.

Definition 2.2. With the above notations, the curye : I — M7 is said to be an
s-degeneratéor s-light-like) curveif for all 1 < i < d, dim RadE; (¢)) is constant for all
t, and there exists, 0 < s < d, such that Ra(F;) # {0} and RadE;) = {0} forall j < s.

Remark 2.3. Note that 1-degenerate curves are precisely the null (or light-like) curves (see,
for instance[2,3,9], and references therein). In this paper we will focussedegenerate
curves § > 1), in Lorentzian spaces. Notice that they must be space-like curves.

To find the Frenet frames, we will distinguish four cases separately:

1) d =nands <d,;
2) d <nands =d,
3)d <nands =d — 1,
4)d<nands <d—1.

Case 2.4 (d = n ands < d). First of all, writey’ = kW1, whereW is a unit space-like
vector such that; > 0. ThenE, = spar{W1} @ sparfy”}, so that from_emma 2.1there
exists a unit space-like vectd¥, such thatE, = spafWy} L spar{Ws}. Furthermore,
W> is unique by choosing it in such a way th@at’, y”} and {W1, W»} have the same
orientation. By proceeding iteratively, usihgmma 2.1 we obtain a sefWs, ..., Wy_1}
of orthonormal space-like sections alopguch thafy’, ..., y@}and{Wx, ..., W;} have
the same orientation for all 1 < i < s — 1. Now we haveE;, = E,_1 & sparfy®}
and dim RadE;) = 1. By using agair,emma 2.1we can find a (not unique) null vector
field L such thatE;, = E;_1 @ sparfL}. Ass # n, becauseE, is non-degenerate, then
Esi1 = E; ®spariy “*D}. Now we will prove that dim Ra¢F,, 1) = 1. By assuming that
dimRadE;;1) = 0, then there exists a unique null vector fidNdsatisfying(W;, N) =
(N,N) =0,(L,N) = ¢, = £1, andE; 1 = spariWi, ..., W;_1, L, N}. By taking
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derivatives we obtain the following equations:

Y = kaWa, W, = koWa, W = —kiWi_1+kiyaWit1, 2<i<s-—2,
s/—l = _];s—le—Z + 8]ESL7 L'= 8lzs+lL

for certain functionst;, j = 1,...,5 + 1. As L € sparfy’,...,y®}, we can write
L=y +-- 4 x4y, with A; # 0, and thereforel’ = (x) + A,y D = ek, 1L €
sparfy’, ..., y®}. We conclude thay “*V e spar{y’, ..., y®}, which cannot hold.

Then dim RadE;.1) = 1, and using.emma 2.lonce more there exists a (not unique)
vector fieldW; such thaty’, ..., D} and{Wy, ..., W,_1, L, W,} have the same ori-
entation. Since > s + 1, we claim that dim Rad:,2) = 0. Otherwise, there exists a unit
space-like vector fieldV 1 orthogonal toE;, 1. By differentiating we obtain

W{_]_ = _];s—lVVs—Z + Elgslu L'= 8lzs-i-lL + ];S-"-ZWS" 1)

S

Since RadE,, ») = spar{L} we get(L, y 61Dy = (L, y¢*2)y = 0, so that(L’, y s1D) =

0. From here andl) we find that(W,, y¢*D) = 0 (i.e. W; lies in RadE,.1)), which

is a contradiction. Hence dim R@aH,+2) = 0 and there exists a uniqu€ satisfying
(N,L) = ¢ and (N, W;) = 0. We choose: in such a way tha{y’, ..., y“*?} and
{W1, ..., Ws_1, L, Wy, N} have the same orientation.sif+ 2 = n, the process concludes;
otherwise, dimRag¥;) = 0 fori > s + 2 and we can obtain orthonormal space-like
sectiond W41, ..., Wy}, m = n — 2, with the same orientation rule. The vector fiélg,

is chosen in order thatWy, ..., Ws_1, L, Wy, N, W41, ..., Wy} is positively oriented.
Regarding this reference, we have the following equations:

Y =kiWy, W, = koWo, W = —kiWi_1 +kizaWip1, 2<i<s-2
W/_]_ = _];s—lVVs—Z + Elzslu L' = 8]Es+lL + EH—ZWY’

N
W, = eksyal — eksioN, N’ = —ksWy_1 — ekssaN — ksy3Ws + kssaWiy1,
Wi = —ekgy 4L + ks15Wii2, Wj/» = —kj13Wj_1+kjaWji1,

s+2<j<m-1, w/ = —kp+3Wpn—1

m
for certain functiongky, . .., kyn43). The setF = (Wi, ..., Wys_1, L, Wy, N, Wy i1, ...,
W,,} is said to be arenet referencalong y. The functions{ky, ..., k,3} are called
the curvature function®f y with respect taF. The above equations are called frenet
equationsof y with respect taF.

Case 2.5 (d < nands = d). A similar reasoning as i€ase 2.4hows that there exists a

set{Wy, ..., W,_1, L} such thatL is a null vector,{W, ..., W;_1} is an orthonormal set
of space-like vectors anel; = spariWs, ..., W;_1, L}. Then we can obtain the following
equations:

Y =kiWy, = koWa, W = —kiWis1+kipaWiy1, 2<i<s-—2

Wi 3 = —ksaWs_2+ ek L, L' = ¢ekg 1L

for certain functiongky, ..., kyy1}. If M7 is a Lorentzian space form, thenlies in a
d-dimensional totally geodesic light-like submanifold. This can be proved by adapting the
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proofs of Theorems 5 and 9 of Chapter 718]. This case has been treatedSiection 2of
[10].

Case 2.6 (d < nands = d — 1). As above again, we obtaify; = sparfWu, ..., W,_1,
L, Wy} and equations

W,_1 = —ks_1W,_2 + kL, L' = eksy1L + kg2 Wy, W, = ekyi3L.

N

Since Wy lies in EX, we have(W;, y®)) = 0. By differentiating here we deduce that
(Ws, y©+Dy = 0, which is a contradiction.

Case2.7(d < nands < d—1). NowwehaveE; = (W1, ..., Wy_1,L, Wy, N, Weyq, ...,
Wa-2}. Working as in case of non-degenerate curves (see[l&g\Vol. IV]), if M7 is a
Lorentzian space form we deduce thaties in ad-dimensional non-degenerate totally
geodesic submanifold dff;. So this case reduces @ase 2.4

Remark 2.8. Before going any further, we note that the typgoes not depend on the pa-
rameter of the curve. To see thatdéie another parameter and wrjté) = B(z(¢)). By dif-
ferentiating with respect towe gety ) () = >y i (OB (1), i.e.E; = sparfy’(1), ...,
y ()} = spardp’(t), ..., B (1)}, which shows the claim.

On the other hand, leb : M7 — M] be an isometry ang(¢) = (® o y)(t). Then for
all vector fieldV alongy we have

D D
E(dqﬁy(,)(V(t))) =do, <EV(t)> ,

whereD, and D; stand for the covariant derivatives alopgandy, respectively.

Hence(y O (1), y (1)) = (3D (1), 7 (1)) showing that this kind of curves are invariant
under Lorentzian transformations, in the sense that the ¢ygy@es not change under a
Lorentzian transformation.

3. TheCartan reference of an s-degenerate curve

The goal of this section is to find a Frenet frame with the minimal number of curvatures
and such that they are invariant under Lorentzian transformations. We will restrict ourselves
to Case 2.4Without loss of generality, let us assume thds arc-length parametrized, so
thatW; = y” andk; = 1. By takingk, = ¢, Lemma 2.1lleads to a uniquely determined set
{W1, ..., Ws_1, L}. Therefore, we only need to firid;.

Suppose thaW, and W;* are two distinct vector fields generating two distinct Frenet
frames, i.e.:

(W, ..., Ws_1, L, Wg, N, Wey1, ..., Wy}
- {ki=21 ko, ..., kg =1, ksy1, ..., knia},
(Wi, ..., Weea, L, WS N*, W, ..., W)
> ki=Lko, ... kg =Lk q, ...k} 3}
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A straightforward computation shows that
W =1L+ Wi, N*=-3f2L+N—tW,,  kyy=ky1— fhoo (2

wheref : I — Ris adifferentiable function. We can choogén such away that’ ; = 0.
Then by reordering the curvature functions we have the following equations:

y = Wi, Wi = kiWa, W= —ki1Wi_1+kWip1, 2<i<s-2
W{_]_ = —ks—2Ws—2+ L, L' = ks_1 W, WS/ = ekyL — gks_1N,

S
N/ = _Sstl - ks Ws + ks+le+l, Wr/+1 = _Sks+lL + k&+2Ws+2,
W]/ =—kiW;j_1+kjpaWjr1, s+2<j<m-—1, W,/n = —kuWy_1 )

for certain functiongks, . . ., k,, }. Bearing in mind2) we can easily deduce the following
result.

Theorem 3.1. Lety : I — M7, n = m + 2, be an s-degenerate unit curve> 1, and
suppose thaty’ (1), y"(t), ..., y ™ (1)} spansT, ;) M} for all t. Then there exists a unique
Frenet frame satisfyingg. (3)

Definition 3.2. An s-degenerate curve,> 1, satisfying the above conditions is said to be
ans-degenerate Cartan curvéhe reference and curvature functions given®ywill be
called theCartan referencendCartan curvature®f y, respectively.

Observe that whem > s thene = —1 andk; > O fori # s, andk,, > 0 or (k,, <
0, resp.) according toy’, ¥”, ..., y ™} is positively or negatively oriented, respectively.
However, whenn = s thens = —1 ore = 1 according tdy’, y”, ..., y™} is positively

or negatively oriented, respectively, akd> O fori # s.

Definition 3.3. An s-degenerate helix M7 is ans-degenerate Cartan curve having con-
stant Cartan curvatures.

4. s-Degenerate curvesin Lorentzian space forms

Lety : I — M(c) be ans-degenerate Cartan curvl; (c) standing forR’, S% o H,
according tac = 0,¢ = 1 orc = —1, respectively. LeD; denote the covariant derivative
in M (c) alongy. Then for any vector field’ alongy we haveD,V = V' 4+ c(V,y")y,
where(, ) denotes the standard metriciy, Ri ™ or R If (W1, ..., Ws_1, L, Ws, N,
W1, ..., Wy} is the Cartan reference, thé&m. (3)can be written as follows:

Y =W,  Wi=kiWs—cy, W)= —ki—aWi—1+kiWiy1, 2<i=<s-2
W/—l = —ks—2Ws—2+ L, L' = ks—1Ws, Ws/ = eksL — eks—1N,

N

N' = —eWs_1— kW + ks aWsia, W/+l = —¢ekgr1L + ks12Wsq2,

N

Wi=—kjWj 1+kjaWjt1, s+2<j<m-1, W,y = —knWn-1. (4)
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Now we state the following question: LéWq, ..., W,_1, L, Wy, N, Wyya, ..., Wy} be
a reference satisfyin(B) for certain functions;. Is there ars-degenerate Cartan curve
y having{W, ..., Wy_1, L, W, N, W41, ..., Wy} as Cartan reference ahgdas Cartan
curvatures?

The answer is affirmative, as we will show in this section. But before to do that, we are
going to state and prove an algebraic result.

Definition 4.1. AbasisB = {L1, N1,..., L, N,, W1, ..., Wy} ong, with2r <2 <n
andm = n — 2r, is said to bgseudo-orthonormdf it satisfies the following equations:

(Li,Lj)=(N;j,N;)=0, (L;,N;j)=¢;, (Li,Nj)=0, i#],
<Lis Wot) = <Ni7 WO{> = Os (WOU Wﬂ) = 8(15(1,5’

wherei,j € {1,...,r},a, B € {1,...,m},eq = —1ifl <a < g —randg, = 1if
g-—r+1<o<m.

Lemma4.2. LetB = {L1,N1,...,L,, N,, W1,..., W,,} be a basis ofR?, with 2r <

2q <nandm =n — 2r. Consider8’ = {V1, ..., V,, Vy41, ..., Va} Where
1 .
E(Li_giNi) i=1,...,r,
Vi — W;f_, i=r+1....4q, 5)
E(L,'_q +e& - gNig) i=q+1,...,q+r,
Wi_o, i=q+r+1,...,n

The following conditions are equivalent

(i) Bis a pseudo-orthonormal basis
(i) B is an orthonormal basis
(i) B satisfies

q n
—ZVaiVaj+ Z Vi Vgj = nij.
a=1

B=q+1
(iv) B satisfies
r q—r m
Z €a(LaiNaj + LajNai) — Z WgiWgj + Z Woi Woj = njj.
a=1 p=1 §=q—r+1

Here Vi, Lk, Ny, and W, stand for the components of vectdrs, L,, N, and W,,,
respectivelyand (jj) the matrix of the canonical metric in the standard coordinates

Proof. (i) < (ii) It is obvious.
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(ii) < (iii) Consider the matrice¥ = (Vj), B = (bjj) andC = (cjj) in M, x»(R) given
by

q n
bij=(Vi,Vy).  cj=—) VaiVaj+ ) VpiVs
a=1 B=q+1
Put

A1 A B1 B Cc1 C
V= 1 Az ’ B— 1 B2 ’ C— 1 G2 ’
A3z Ay B3z By C3 (4
whereA1, B1 andC; are matrices inM, ., (R). Consider the complex matrix

A1 Ay
A= . € My (C).
—1A3 Ay

Then a straightforward computation shows that
—B; iB —-Cy —iC
AAT _ - 1 2 ’ ATA _ - 1 2 .
1B3 Ba —iC3z (4
ThenB' is orthonormal if and only iC; = —1, C4 = I andCz = C3 = 0.
(i) < (iv) From (5) we have

1 &
Loy = —=Vatq + Vo), Nog = —=Vaiqg — Vo), a@efl,...,r}

V2 V2

and therefore

€4 (LaiNgj + NoiLaj) = —Vai Voj + Viatg)i Via+q)j»
aec{l ....r}, i,je{l,...,n}

which finishes the proof. O

Theorem 4.3. Letky, ..., k, : [-3§, 8] — R be differentiable functions with > Ofori #

s, m.Letpbeapointidy,n = m+2,andlettw?, ..., w2 ., L% w2 NO W0 . ... w2}

be a positively oriented pseudo-orthonormal basig g1’ (c). Then there exists a unique

s-degenerate Cartan curyein M (c), with y (0) = p, whose Cartan reference satisfies
L) = L0, N(0) = N°, Wi =w? iefl,....,m).

1
Proof. By the general theory of differential equations we know that there exists a unique
solution{Wy, ..., Ws_1, L, Wy, N, W41, ..., Wy} of (4), defined on the intervaHs, §],

and satisfying the initial conditions of the theorem. Taking into acc@na straightforward
computation leads to

d m
d_i e(Li(DNj(@) + L;j(&)N; (@) + cyi(®)y; (@) + Z Wgi(t)Wg;(t) | =0.
p=1
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Now, since{Ws, ..., Wy_1, L, Wy, N, W11, ..., W, } is pseudo-orthonormal at= 0,
Lemma 4.2with r = 1) yields

e(Li(t)N;(t) + Lj(t)N;(@)) + cyi(®)y;(t) + Z Wgi(t)Wg;(t) = vj Vt €[4, 4].
p=1

By using again_.emma 4.2 we deduce that, for all, {L, N, Wy, ..., Wy, y} is pseudo-
orthonormal ifc = +1, and{L, N, W1, ..., W, } is pseudo-orthonormal & = 0. This
concludes the proof. O

Theorem 4.4 (Congruence theorem)f two s-degenerate Cartan curves C afidn M (c)
have Cartan curvature§s, . . ., k,, }, wherek; : [-3§, 8] — R are differentiable funcgions
then there exists a Lorentzian transformatioriMif(c) which maps bijectively C intG'.

5. s-Degenerate helicesin M3 (c)

This section is devoted to the classification of 2-degenerate Cartan helices in Lorentzian
space formM‘l‘(c). Now, the Cartan equations can be written as follows:

y =Wy, Wi=L—cy, L =kW,, W} = ekoL — k1N,
N = —eWq — koWo. (6)

If we assume thdt; andk; are constant, thep satisfies the following differential equation:
y® — 2skiky — ¢)y® — (k + 2eckika)y’ = 0.

Without loss of generality, we can assume thas positively oriented, i.es = —1.
In what follows, we will present examples of 2-degenerate Cartan helidwédm) and
show the corresponding characterization theorems.

5.1. Helices inR}

Example5.1. Lety, , be the curve irR] defined by
@) ! (G coshwt g sinhwt @ sinot @ cosm)
=—\(—- , — wt, —SInot, —
Yo.o Vol + o2 \w w o o
with wo > 0. Theny,, » is a helix with curvatures

0'2—602

k1 = wo, ko = oo

Theorem 5.2 (Clasification theorem of 2-degenerate helicﬁﬂh Lety be ans-degenerate
Cartan curve fully immersed ﬂﬁ‘l‘. Theny is a helix if and only if it is congruent to a helix
of Example 5.1
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Proof. Letk; > 0 andk, be the constant curvatures pf By Theorem 1.4t suffices to
find a helix of the family given ilExample 5.with these curvatures. Take constaatand
o such that

o =ki(—ka+/1+kD),  o?=kiltka+\J1+kD)
with wo > 0. The proof concludes since the curvaturegpf, arek, andk,. O

5.2. Helices irfS]

Example 5.3 (Helices of type 1). Let O< 02 < 1 < w? and lety,, , be the curve ir§}
defined by

\/(a)z—l)(l—az) 1\/1—02 1 [1-02
Yo,o (1) = — sinwt, —,| ——— CoSwt,

w202 "o\ w? — o2 o\ w?—o2

! wz_lsin t !
— O"’_
o a)2—0'2 o

Theny, » is a helix with curvatures

5 COSo't

w0’ +02-1

ki=vV@2—1)1—-02), k= .
(@2 —1(1—0?)

Example 5.4 (Helices of type 2). Let-? > 1 and lety,, , be the curve ir§] defined by

1
Vo,o(t) = —,/ 2COSha)t 1/ Slnha)t ‘/ 5 sinat,
w 2+o
1 241 1
2 cosot, =@+ DZ-D|. w0
o\ w2+ o2 wo

Theny, » is a helix with curvatures

o2 —w?—-1

k1= V(0?2 = 1)(0?+1), ko = .
(02— D(w?+1)

Example 5.5 (Helices of type 3). Let? > 1 and lety, be the curve irS‘l1 defined by

1«/04 02 V04 Vot-1 , 1

1
)= 1=, Sln t, COSso't
Yo (1) o2 2(02+1) o2 o 02
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Theny; is a helix with curvatures

ki=vVo2—1 k=3 02-1.

Theorem 5.6 (Classification theorem of 2-degenerate helic@)n Lety be ans-degenerate

Cartan curve fully immersed '&‘1‘. Theny is a helix if and only if it is congruent to one in
the families described iBxamples 5.3-5.5

Proof. Letk; > 0 andk; be the constant curvaturesjof We have to find a helix of one of
the above types with these curvatures.
Case 1Assume thaky > k1/2. Take the helix,, , of type 1 determined by

= L((@kake + D) + /(1 - 2ksko)? + 42),

= (@kake + 1) — /(L 2ksko)? + 402).

A straightforward computation shows that0o? < 1 < w? and the curvatures of, ,
arekq andk;.
Case 2 Assume thakz < k1/2. Take the helix,, , of type 2 determined by

(—(@kakz + 1) + /(1 — 2ak)? + 4k2),

1

2
= 3((2kak2 + 1) + \/ (1 — 2k1k2)2 + 4k?).
It is easy to show that? > 1 and the curvatures of,.» arek1 andk,.

Case 3Assume that, = k1/2. Take the heliy, of type 3 determined by? = 1+ k2.
It is easy to see that? > 1 and the curvatures gf, arek; andko.

The result follows fromTheorem 1.2 O

5.3. Helices erfl}

Example 5.7 (Helices of type 1). Let O< 02 < 1 < w? and lety, , be the curve irfl}

defined by
w2 —
ha)t hat hwt
—02 cos 2_02COS _Uzsm wt,
‘/ smhot —— V(@ -1DA—-0 )

Theny, » is a helix with curvatures

Yo,o (1) =

SN

Q|

1 w?+02-1
k=@ - DA—0?), kp=—r 21 .
(a)2 1A - (72)
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Example 5.8 (Helices of type 2). Let? > 1 and lety,, , be the curve ifl} defined by
(@2 —-1(2+1) 1 [oc2+1 1 /0241 .
1) = , — coshwt, —, | —— sinhwt,
Yoo (t) \/ w?0? o\ o?+ 02 o\ @?+ 02 ©
! wz_lsin ., 1 wz_lcosm #0
—.| ——=Ssinot, —,| —— , O .
o\ w2+ 02 o\ w2+ 02

Theny,, » is a helix with curvatures

o2 —w?+1

V@ =162 +1)

Example 5.9 (Helices of type 3). Let? > 1 and lety,, be the curve irH‘l1 defined by

k1= V(0?2 - 1) (02 +1), kp =

NI =

4_1 4_1 1 1 .
Vo Vo 2~ coshwt, — sinhwt,

Yoo (1) = w2 + 2(w? + 1)t w2 w2
w? -1 1-—ow? 2
w2 2(w? + 1)t
Theny, is a helix with curvatures
ki=vVw? -1, kzz—% w? —1.

Theorem 5.10 (Clasification theorem of 2-degenerate helicdﬁjl)u. Lety be an s-degene-
rate Cartan curve fully immersed H‘l‘. Theny is a helix if and only if it is congruent to
one in the families described Examples 5.7-5.9

Proof. The idea of the proof is exactly alike as that in the precedent caseks: e and
ko be the constant curvaturesjof By the congruence theorem we only have to find a helix
of one of the above types with these curvatures.

Case 1 Assume thak, < —k1/2. Take the heliy,, » of type 1 determined by

W = 3L = 2kaka) +/ Rkake + 12 + 4D),

NI NI

o_2

((1— Zkakp) — \/2hakz + 12 + 4k2).

A straightforward computation shows thato? < 1 < w? and the curvatures of,, ,
arekq andk;.
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Case 2 Assume thaky > —k1/2. Take the helix/, , of type 2 determined by

o = 31 - 2aka) +/ @kakz + D2 + 42),

o? = L(—(1 - 2kikp) + \/(Zklkz + 12+ 4k3).

As before we have thai? > 1 and the curvatures of,.. areks andko.
Case 3 Finally, assume that, = —k1/2. Take the helixy,, of type 3 determined by
w? = 1+ k2. Itis easy to see that® > 1 and the curvatures ¢f, arek; andks. O
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